返回
选矿技术
某铁矿中白钨的综合回收试验研究
来源:选矿技术网2017-04-123988

一、原矿矿石性质

某铁矿属岩浆期后气化-中温热液交代多金属矽卡岩型矿床,矿石结构复杂,有半自形~它形粒状结构,自形粒状结构,交代溶蚀等结构;以浸染状构造为主。金属矿物以磁铁矿、白钨矿、锡石为主。次为黑钨矿、赤铁矿、褐铁矿等,脉石以萤石、辉石、方解石为主。

(一)磁铁矿:自形~它形粒状均有出现,粒间较紧密嵌生,略具定向排布,与萤石等脉石矿物相间排列,构成条带状构造。磁铁矿晶体中,常见赤铁矿沿其节理交代,有的进一步交代形成假像赤铁矿,进而完全为赤铁矿所交代。粒径大小分布在0.002~0.25mm之间,粒级0.10~0.15mm居多。

(二)白钨矿:半自形~它形粒状,多成群出现,构成鸡冠状粒状集合体,多嵌布在萤石粒间或节理缝中,晶体中常包裹有质点状,微细粒状磁铁矿包体,集合体粒径大小在0.05~0.15mm之间,单体粒径大小在0. 02~0.04mm之间。

(三)锡石:呈半自形粒状,常以散粒状嵌布在矿石中,粒径大小在0.03~0.10mm之间。

矿石多元素分析结果见表1,钨的物相分析结果见表2。

表1  多元素分析结果

表2  钨的物相分析结果

由表1、表2的结果可见,矿石中主要工业矿物为铁、白钨和锡石。白钨的含量虽然较低,但已达到了综合回收的工业要求。

二、选钨工艺试验研究

(一)原则流程的确定

对磁选尾矿进行了不同的工艺流程试验,来考查有用金属白钨的回收情况,结果表明,采用摇床、跳汰等重选,以及强磁工艺获得的指标都不理想。

此外,磨矿细度是极其重要的技术参数,涉及到磨矿段数,以及投资和运行成本等重大问题。对磁选尾矿进行工艺矿物学分析,以及试验,表明经过一段磨矿(-0.074%占75%)后的磁选尾矿中钨已经基本上得到单体解离,因此磁选尾矿不再进行二段磨矿。

(二)捕收剂选择对比试验

捕收剂的选择对比试验结果见表3。从表3中的试验结果可以看出,广州院研制的GYR和ZL捕收剂对该矿的捕收能力较好,GYR捕收能力强,而ZL选择性相对好。

表3  捕收剂选择试验结果

(三)正交条件试验

水玻璃对白钨矿浮选有重大影响,水玻璃用量过低,则不能有效抑制含钙脉石矿物,水玻璃用量过大,则会对白钨矿浮选产生显著抑制作用。碳酸钠可调节矿浆的碱度,改变白钨矿表面活性,加快白钨矿浮游速度,分散矿泥,与水玻璃联合作用可改善白钨矿石的浮选。为了能更准确的确定药剂的用量情况,特进行正交试验,确定的浮选条件为水玻璃用量、pH值(纯碱用量)、GYR用量、水玻璃模数,每个条件共进行三个水平,采用L34正交表安排试验点。正交试验的条件安排见表4,正交试验的试验结果见表5。

表4  水平对应条件情况表

表5  L34条件试验安排及结果

由表5可以看出,影响精矿回收率指标和精矿品位指标的大小顺序都为水玻璃用量>GYR用量>pH值(纯碱用量)>水玻璃模数,综合考虑精矿品位及回收率,最佳试验条件选为水玻璃用量2000g/t左右、GYR用量600g/t左右、纯碱用量(pH值)3000g/t、水玻璃模数选为2.0。

(四)工艺流程确定试验

工艺流程试验主要是考虑精、扫选次数,精、扫选次数同样是影响产品指标的主要因素。工艺流程试验结果见图1、图2。

图1  精选次数试验结果

图2  扫选次数试验结果

从图1中可以看出,采用GYR作为捕收剂,精选次数要达到五次,钨的品位才能达到62%以上,但是通过适当的调整药剂可以减少精选次数。从图2可以看出,扫选三次后回收率变化不大,精矿品位也变化很小,因此确定扫选次数为3次。

(五)全流程闭路试验

全流程闭路试验的工艺流程见图3,试验的结果见表6。

图3  全流程闭路试验工艺流程

表6  全流程闭路试验结果

对闭路试验浮选尾矿镜下观察发现,尾矿中含钨矿物主要是白钨矿,有极少的黑钨矿,粒度大小在0.005~0.08mm之间,单体解离度达到90.15%,杂质矿物主要有萤石、方解石、辉石,少量的磁铁矿、符山石、绿帘石、石英、黄铁矿等。

三、小结

(一)该矿的有用矿物主要为白钨矿、磁铁矿,虽然该矿含锡的品位达到0.25%,但难以回收;脉石矿物主要有萤石、石榴子石、辉石等。白钨矿呈粗细不均匀嵌布,整体嵌布粒度偏细。

(二)通过粗磨磁选,磁选尾矿直接浮钨,采用一粗五精三扫流程,可获得含WO3品位61.92%、回收率74.82%的钨精矿产品。该工艺流程所获指标较高,且工艺流程稳定可靠,药剂制度简单,生产易于实现。

  • 同类技术